2511
of

Changes as of 5/14/00

Removed reference to Orientation$ as a commonly modified font field.

Added 5 functions:

SetROP2

GetROP2

PushFont

PopFont

LineSpacing(<LinesPerInch>)

Printing - Quick Reference

General Information

UNIT OF MEASURE - TWIPS:

Regardless of the nature of the printer being addressed, the pixel resolution used

by the windows printer driver is in units referred to as TWIPS. 1 TWIP is equal to

1/20th of a printer's POINT. 1 POINT is equal to 1/72nd of an inch. Therefore there

are 1440 TWIPS per inch or 567 TWIPS per centimeter. Unless otherwise stated, ALL functions contained herein use TWIPS as the unit of measure.

PAGE SIZES:

When calculating the dimensions of a printer page, keep in mind that in many cases

the entire page is not always printable (HP Laser printers have a 1/4" unprintable area

on all four sides). Therefore, it may be necessary to inquire as to not just the page size,

but also the offset from the physical page boundary to the printable page boundary.

See GetPageInfo for additional info.

FONTS:

Font sizes are requested in tenth's of a point. This does not guarantee that

the font created is exactly the requested size. It is important to inquire AFTER

selecting a font as to the actual size the font mapper created. Also, when printing

text there is usually some additional space (external leading) added between lines.

This space is specified by the font designer and should be combined with the font

height to determine the height of a line. See GetFontInfo for additional information.

MNEMONICS:

Commands are issued to a Windows printer using MTB mnemonics. These commands can be issued directly in the form of a PRINT (list) statement or through a PRINT (format) statement. If the PRINT (list) method is used a (TR) mnemonic must precede all commands in the list. For example:

! PRINT (list) method

PRINT (Lun) (TR);(Move To = X1, Y1);(Line To = X2, Y2)

! PRINT (format) method

FmtLineAt: Format (Move To = X1, Y1) ;(Line To = X2, Y2)

.

.

.

PRINT (Lun, FmtLineAt)

USE FILES:

#COSUTLD
Constants and variables commonly used by other USE files

and applications for parameter passing (TRUE, FALSE, NULL, etc).

#PTRCTLD
Printer driver function constants (paper sizes, bins, etc.)

#LOGFNT
Functions used to manipulate fonts

#LOGFNTD
Constants and variables used by #LOGFNT

#FILFND
Contains routine for finding DOS filenames for files living in Comet directories

#FILFNDD
Constants and variables used by #FILFND

#DESERVE
Declaratives for Driver Event Server programs

Text & Font Functions

PushFont

Saves the current font on a stack so it can be restored with a corresponding PopFont.

PopFont

Restores a font previously saved with a PushFont.

LineSpacing(<LinesPerInch>)

Adjusts the line spacing for the current font to <LinesPerInch>.

(SelectFont);<LogFontData>

Selects the font specified by the <LogFont> structure.

(SelectSysFont = <FontNumber>)

Selects the SYSTEM font specified by <FontNumber>.

(GetFontInfo = <ItemCode>)

Returns the font information specified by <ItemCode>.

(SetTextColor = <Red>, <Green>, <Blue>)

Sets the current text color as specified by <Red>, <Green>, <Blue>.

(GetTextColor)

Returns the current text color.

(SetBkColor = <Red>, <Green>, <Blue>)

Sets the current background color as specified by <Red>, <Green>, <Blue>.

(GetBkColor)

Returns the current background color.

(SetBkMode = <Mode>)

Sets the background mode specified by <Mode>.

(GetBkMode)

Returns the current background mode.

(SetTextAlign = <Flags>)

Sets the text alignment mode to that specified by <Flags>.

(GetTextAlign)

Returns the current text alignment mode.

(GetTextExtent);<Printable Text>

Measures the size (width and height) of the specified <Printable Text>.

(TextOut = <X>, <Y>); <Printable Text>

Prints the specified <Printable Text> at the location specified by <X> and <Y>.

(DrawText = <Left>, <Top>, <Right>, <Bottom>, <Flags>);<Printable Text>

Prints the specified text <Printable Text> into the rectangle specified by the
coordinates <Left>, <Top>, <Right>, <Bottom> using the format codes specified

in <Flags>.
Graphics and Drawing Functions

(SelectPen = <Style>, <Width>, <Red>, <Green>, <Blue>)

Selects the pen described by <Style>, <Width> and <Red>, <Green>, <Blue>.

(SelectSolidBrush = <Red>, <Green>, <Blue>)

Selects the solid brush described <Red>, <Green>, <Blue>.

(SelectHatchBrush = <Style>, <Red>, <Green>, <Blue>)

Selects the hatched brush described <Style> and <Red>, <Green>, <Blue>.

(MoveTo = <X>, <Y>)

Moves the current location pointer to the location specified by <X> and <Y>.

(LineTo = <X>, <Y>)

Draws a line using the currently selected pen from the current location pointer to the location specified by <X, Y>.

(Ellipse = <Left>, <Top>, <Right>, <Bottom>)

Draws an ellipse bound by the rectangle specified by <Left>, <Top>, <Right>, <Bottom> using the currently selected pen and brush.

(Rectangle = <Left>, <Top>, <Right>, <Bottom>)

Draws a the rectangle specified by <Left>, <Top>, <Right>, <Bottom> using the currently selected pen and brush.

(RoundRect = <Left>, <Top>, <Right>, <Bottom>, <CornerWidth>, <CornerHeight>)

Draws a rectangle with corners rounded using the ellipse specified by <CornerWidth> and <CornerHeight> at the location specified by <Left>, <Top>, <Right>, <Bottom> using the currently selected pen and brush.

(DrawBitmap = <Left>,<Top>,<Right>,<Bottom>,<ScaleX>,<ScaleY>,<Flags>);<FileName>

Draws the bitmap contained in the file (.BMP/.JPG) specified in <FileName> in the rectangle specified by <Left>, <Top>, <Right>, <Bottom> using the format codes contained in <Flags>. Scaling factors can be specified in <ScaleX>, <ScaleY>.

(SetROP2 = <Mode>)

Sets the current foreground mix mode.
(GetROP2)

Returns the current foreground mix mode.
Printer Control Functions

(SetOrientation = <Mode>)

Sets the paper orientation contained in <Mode>.

(GetPageInfo = <ItemCode>)

Returns the information specified in <ItemCode>

Printing - Function Reference

SelectFont

PushFont

Saves the current font on a stack so it can be restored with a corresponding PopFont. This feature allows a programmer to modify the printer font for a specific purpose and then restore the previous font without knowing how it was selected.

Example:
Print (LUN) (PushFont)
! Save the current font

Print (LUN) (SelectFont);LogFontData$
! Establish desired font

.

. Do some printing

.

.

PopFont

! Restore the saved font

PopFont

Restores a font previously saved with a PushFont. (See PushFont).

LineSpacing(<LinesPerInch>)

Adjusts the line spacing for the current font to <LinesPerInch>. Due to differences in font design, when you select a font you may get the desired font but not the desired spacing (external leading may have been applied). This function provides a line spacing override that will adjust the font to fit your page requirements.

(SelectFont);<LogFontData>

Selects the font specified by the <LogFont> structure.

Typically, a user will call GDI.InitLogFont first to set all font fields to their default

values, and then modify whichever field needs changing.

Because the font structure consists of MTB strings, the INTEL/INTELD functions

must be used to effect any modifications. For an example see the GDI.InitLogFont

function in the USE file #LOGFNT.

Some commonly modified fields are:

lfHeight$
Font size in 10th's of a point (inch/72). The font

mapper looks for the largest font that does not exceed

the requested size; if there is no such font, it looks

for the smallest font available.

lfWidth$
Specifies the average width, in logical units, of

characters in the font. If lfWidth is zero, the aspect

ratio of the device is matched against the digitization

aspect ratio of the available fonts to find the closest

match, determined by the absolute value of the difference.

lfEscapement$ Specifies the angle, in tenths of degrees, of each line

of text written in the font (relative to the bottom of the page).

lfWeight$
Darkness (or lightness) of the characters

lfItalic$
Specifies an italic font if set to TRUE.

lfUnderline$
Specifies an underlined font if set to TRUE.

lfStrikeOut$
Specifies a strikeout font if set to TRUE.

lfFaceName$
 Desired font face ("Arial", "Courier New", etc.)

SelectSysFont

(SelectSysFont = <FontNumber>)

Selects the SYSTEM font specified by <FontNumber>.

Where:

<FontNumber>
A Number from 0 to 2, corresponding to an entry

in the COSW.INI [Printer Fonts] section.

Provides a system dependent method for assuring compatible printer output

by allowing the system user to choose the system fonts according to what

is available at that system.

Font numbers are defined as follows:

0 Used for normal printing

1 Used for compact (compressed) printing

2 Used for wide (expanded) printing

GetFontInfo

(GetFontInfo = <ItemCode>)

Returns the font information specified by <ItemCode>.

Where <ItemCode> is:

PTR.FONT.HEIGHT - Specifies the height (ascent + descent) of characters

PTR.FONT.EXTLEADING - Specifies the amount of extra leading (space) that

the application adds between rows. Since this area

is outside the font, it contains no marks and is

not altered by text output calls in either OPAQUE

or TRANSPARENT mode. May be 0.

PTR.FONT.AVECHARWIDTH - Specifies the average width of characters in the

font (generally defined as the width of the letter x). This value

does not include the overhang required for bold or italic characters.

PTR.FONT.MAXCHARWIDTH - Specifies the width of the widest character in

the font.

PTR.FONT.WEIGHT - Specifies the weight of the font.

SetTextColor & SetBkColor

(SetTextColor = <Red>, <Green>, <Blue>)

Sets the current text color as specified by <Red>, <Green>, <Blue>.

(SetBkColor = <Red>, <Green>, <Blue>)

Sets the current background color as specified by <Red>, <Green>, <Blue>.

Colors are represented by 3 (Red, Green, Blue) color intensity values, each

ranging in value from 0 (no color - black) to 255 (max color - white).

<Red>
! Specifies the amount of RED

<Green>
! Specifies the amount of GREEN

<Blue>
! Specifies the amount of BLUE

GetTextColor & GetBkColor

 (GetTextColor)

Returns the current text color.

(GetBkColor)

Returns the current background color.

The return value for this function is obtained by requesting the result of the previous

operation with (GetFuncResult) and then performing an input of the 4 byte return value

(see GetFuncResult).

SetBkMode

(SetBkMode = <Mode>)

Sets the background mode specified by <Mode>.

Sets the background mode. The background mode defines whether the system

removes existing background colors on the drawing surface before drawing

text, hatched brushes, or any pen style that is not a solid line.

Where <Mode> is:

BKM.OPAQUE
Background is filled with the current background color

before the text, hatched brush, or pen is drawn. This is

the default background mode.

BKM.TRANSPARENT Background is not changed before drawing.

GetBkMode

(GetBkMode)

Returns the current background mode.

The return value for this function is obtained by requesting the result of the previous

operation with (GetFuncResult) and then performing an input of the 4 byte return value

(see GetFuncResult).

SetTextAlign & GetTextAlign

(SetTextAlign = <Flags>)

Sets the text alignment mode to that specified by <Flags >.

The TextOut function uses these flags when positioning a string of text on a display or device. The flags specify the relationship between a specific point and a rectangle that bounds the text. The coordinates of this point are passed as parameters to the TextOut member function. The rectangle that bounds the text is formed by the adjacent character cells in the text string.

The flags specify the relationship between a point and a rectangle that bounds the text. The point may be either the current position or the coordinates specified by a text-output function. The rectangle that bounds the text is defined by the adjacent character cells in the text string. The <Flags> parameter can be one or more flags from the following three categories. Choose only one flag from each category.

The first category affects text alignment in the x-direction:

TA.CENTER

Aligns the point with the horizontal center of the bounding rectangle.

TA.LEFT
Aligns the point with the left side of the bounding rectangle.

This is the default setting.

TA.RIGHT

Aligns the point with the right side of the bounding rectangle.

The second category affects text alignment in the y-direction:

TA.BASELINE
Aligns the point with the base line of the chosen font.

TA.BOTTOM

Aligns the point with the bottom of the bounding rectangle.

TA.TOP

Aligns the point with the top of the bounding rectangle. (default)

The third category determines whether the current position is updated when text is written:

TA.NOUPDATECP
Does not update the current position after each call to a text-output function. This is the default setting.

TA_UPDATECP
Updates the current x-position after each call to a text-output function.

The new position is at the right side of the bounding rectangle for the text. When this flag is set, the coordinates specified in calls to the TextOut member function are ignored.

GetTextAlign, GetTextExtent & TextOut

 (GetTextAlign)

Returns the current text alignment Flags. The resulting flags are

 returned in <LoWord>.

(GetTextExtent);<Printable Text>

Measures the size (width and height) of the specified <Printable Text>.

The resulting width and height are returned in <LoWord> and <HiWord> (respecively).

The return value for this function is obtained by requesting the result of the previous

operation with (GetFuncResult) and then performing an input of the 4 byte return value

(see GetFuncResult).

(TextOut = <X>, <Y>); <Printable Text>

Prints the specified <Printable Text> at the location specified by <X> and <Y>.

Character origins are at the upper-left corner of the character cell. By

default, the current position is not used or updated by the function.

If an application needs to update the current position when it calls TextOut,

the application can call the SetTextAlign member function with Flags set to

TA.UPDATECP. When this flag is set, Windows ignores the x and y parameters on

subsequent calls to TextOut, using the current position instead.

DrawText

(DrawText = <Left>, <Top>, <Right>, <Bottom>, <Flags>);<Printable Text>

Prints the specified text <Printable Text> into the rectangle specified by the
coordinates <Left>, <Top>, <Right>, <Bottom> using the format codes specified

in <Flags>.
Call this member function to format text in the given rectangle. It formats text by expanding tabs into appropriate spaces, aligning text to the left, right, or center of the given rectangle, and breaking text into lines that fit within the given rectangle, and breaking text into lines that fit within

the given rectangle. The type of formatting is specified by <Flags>.

The formatting codes can be combined and are specified in <Flags>.

DT.TOP

Specifies top-justified text (single line only).

DT.LEFT

Aligns text flush-left.

DT.CENTER

Centers text horizontally.

DT.RIGHT

Aligns text flush-right.

DT.VCENTER
Specifies vertically centered text (single line only).

DT.BOTTOM

Specifies bottom-justified text. This value must be

combined with DT.SINGLELINE.

DT.WORDBREAK
Specifies word-breaking. Lines are automatically

broken between words if a word would extend past the

edge of the rectangle specified by <Left>, <Top>,

<Right>, <Bottom>. A carriage return-linefeed sequence

will also break the line.

DT.SINGLELINE
Specifies single line only. Carriage returns and

linefeeds do not break the line.

DT.EXPANDTABS
Expands tab characters. The default number of

characters per tab is eight.

DT.TABSTOP
Sets tab stops. The high-order byte of <PtrFlags> is

the number of characters for each tab. The default

number of characters per tab is eight.

DT.NOCLIP
Draws without clipping. DrawText is somewhat faster

when DT.NOCLIP is used.

DT.EXTERNALLEADING
Includes the font's external leading in the line

height. Normally, external leading is not included

in the height of a line of text.

DT.CALCRECT
returns the height of the formatted text, but does

not draw the text.

DT.NOPREFIX
Turns off processing of prefix characters. Normally,

DrawText interprets the ampersand (&) mnemonic-prefix

character as a directive to underscore the character

that follows, and the two-ampersand (&&) mnemonic-

prefix characters as a directive to print a single

ampersand. By specifying DT.NOPREFIX, this processing

is turned off.

DT.INTERNAL
Uses the system font to calculate text metrics.

DT.EDITCONTROL Duplicates the text-displaying characteristics of a

multiline edit control. Specifically, the average

character width is calculated in the same manner as

for an edit control, and the function does not

display a partially visible last line.

DT.PATH.ELLIPSIS
 See DT.END.ELLIPSIS Below

DT.END.ELLIPSIS
Replaces part of the given string with ellipses, if necessary,

so that the result fits in the specified rectangle. The given

string is not modified unless the DT.MODIFYSTRING flag

is specified.

You can specify DT.END.ELLIPSIS to replace characters

at the end of the string, or DT.PATH.ELLIPSIS to replace

characters in the middle of the string. If the string contains

backslash (\) characters, DT.PATH.ELLIPSIS preserves as

much as possible of the text after the last backslash.

DT.MODIFYSTRING Modifies the given string to match the displayed text.

This flag has no effect unless the DT_END_ELLIPSIS or

DT_PATH_ELLIPSIS flag is specified.

DT.RTLREADING
Layout in right to left reading order for bi-directional text when

the font selected into the hdc is a Hebrew or Arabic font.

The default reading order for all text is left to right.

DT.WORD.ELLIPSIS Truncates text that does not fit in the rectangle and adds ellipses.

NOTE: The values DT.CALCRECT, DT.EXTERNALLEADING, DT.INTERNAL, DT.NOCLIP, and

DT.NOPREFIX cannot be used with the DT.TABSTOP value.

SelectPen

(SelectPen = <Style>, <Width>, <Red>, <Green>, <Blue>)

Selects the pen described by <Style>, <Width> and <Red>, <Green>, <Blue>.

Available pen styles <Style> are:

PS.SOLID

Creates a solid pen.

PS.DASH
Creates a dashed pen. Valid only when the pen width is 1 or

less, in device units.

PS.DOT
Creates a dotted pen. Valid only when the pen width is 1 or

less, in device units.

PS.DASHDOT
Creates a pen with alternating dashes and dots. Valid only

when the pen width is 1 or less, in device units.

PS.DASHDOTDOT
Creates a pen with alternating dashes and double dots. Valid

only when the pen width is 1 or less, in device units.

PS.NULL

Creates a null pen.

PS.INSIDEFRAME
Creates a pen that draws a line inside the frame of closed

shapes produced by the Windows GDI output functions that

specify a bounding rectangle (for example, the Ellipse,

Rectangle, RoundRect, Pie, and Chord member functions).

When this style is used with Windows GDI output functions

that do not specify a bounding rectangle (for example, the

LineTo member function), the drawing area of the pen is not

limited by a frame.

If the width of the pen <PtrWidth> is 0, the width in device units is always

1 pixel, regardless of the mapping mode.

NOTE: See SetTextColor for color parameter information.

SelectSolidBrush & SelectHatchBrush

 (SelectSolidBrush = <Red>, <Green>, <Blue>)

Selects the solid brush described <Red>, <Green>, <Blue>.

NOTE: See SetTextColor for color parameter information.

(SelectHatchBrush = <Style>, <Red>, <Green>, <Blue>)

Selects the hatched brush described <Style> and <Red>, <Green>, <Blue>.

Where <Style> can be one of the following values:

HS.HORIZONTAL
Horizontal hatch

HS.VERTICAL
Vertical hatch

HS.FDIAGONAL
Upward hatch (left to right) at 45 degrees

HS.BDIAGONAL
Downward hatch (left to right) at 45 degrees

HS.CROSS

Horizontal and vertical crosshatch

HS.DIAGCROSS
Crosshatch at 45 degrees

NOTE: See SetTextColor for color parameter information.

MoveTo & LineTo

(MoveTo = <X>, <Y>)

Moves the current location pointer to the location specified by <X>, <Y>.

Returns: The X and Y coordinates of the previous position in <LoResult> and

<HiResult> (respectivly).

(LineTo = <X>, <Y>)

Draws a line using the currently selected pen from the current location pointer up to

but not including the location specified by <X>, <Y>. The current position is set

to <X>, <Y>.

SetROP2

 (SetROP2 = <Mode>)

Sets the current foreground mix mode. GDI uses the foreground mix mode to combine pens and interiors of filled objects with the colors already on the screen. The foreground mix mode defines how colors from the brush or pen and the colors in the existing image are to be combined.

Where <Mode> can be any of the following values:

	Mix mode
	Description

	R2.BLACK
	Pixel is always 0.

	R2.COPYPEN
	Pixel is the pen color.

	R2.MASKNOTPEN
	Pixel is a combination of the colors common to both the screen and the inverse of the pen.

	R2.MASKPEN
	Pixel is a combination of the colors common to both the pen and the screen.

	R2.MASKPENNOT
	Pixel is a combination of the colors common to both the pen and the inverse of the screen.

	R2.MERGENOTPEN
	Pixel is a combination of the screen color and the inverse of the pen color.

	R2.MERGEPEN
	Pixel is a combination of the pen color and the screen color.

	R2.MERGEPENNOT
	Pixel is a combination of the pen color and the inverse of the screen color.

	R2.NOP
	Pixel remains unchanged.

	R2.NOT
	Pixel is the inverse of the screen color.

	R2.NOTCOPYPEN
	Pixel is the inverse of the pen color.

	R2.NOTMASKPEN
	Pixel is the inverse of the R2_MASKPEN color.

	R2.NOTMERGEPEN
	Pixel is the inverse of the R2_MERGEPEN color.

	R2.NOTXORPEN
	Pixel is the inverse of the R2_XORPEN color.

	R2.WHITE
	Pixel is always 1.

	R2.XORPEN
	Pixel is a combination of the colors in the pen and in the screen, but not in both.

(GetROP2)

Retrieves the foreground mix mode of the specified device context. The mix mode specifies how the pen or interior color and the color already on the screen are combined to yield a new color. The resulting mode is returned in <LoWord>.

Ellipse, Rectangle & RoundRect

(Ellipse = <Left>, <Top>, <Right>, <Bottom>)

Draws an ellipse. The center of the ellipse is the center of the bounding

rectangle specified by <Left>, <Top>, <Right>, <Bottom>. The ellipse is

drawn with the current pen, and its interior is filled with the current brush.

The figure drawn by this function extends up to, but does not include, the

right and bottom coordinates. This means that the height of the figure is

<Bottom> - <Top> and the width of the figure is <Right> - <Left>.

If either the width or the height of the bounding rectangle is 0, no ellipse

is drawn.

 (Rectangle = <Left>, <Top>, <Right>, <Bottom>)

Draws a the rectangle specified by <Left>, <Top>, <Right>, <Bottom> using the currently selected pen. The interior of the rectangle is filled using the current brush.

Draws a rectangle specified by <Left>, <Top>, <Right>, <Bottom> using the

current pen. The interior of the rectangle is filled using the current brush.

The rectangle extends up to, but does not include, the right and bottom

coordinates. This means that the height of the rectangle is<Bottom> - <Top>

and the width of the rectangle is <Right> - <Left>. Both the width and the height of

a rectangle must be greater than 2 units and less than 32,767 units.

(RoundRect = <Left>, <Top>, <Right>, <Bottom>, <CornerWidth>, <CornerHeight>)

Draws a rectangle with corners rounded using the ellipse specified by <CornerWidth> and <CornerHeight> at the location specified by <Left>, <Top>, <Right>, <Bottom> using the currently selected pen. The interior of the rectangle is filled using the current brush.

See Rectangle.

DrawBitmap

(DrawBitmap = <Left>,<Top>,<Right>,<Bottom>,<ScaleX>,<ScaleY>,<Flags>);<FileName>

Draws the bitmap contained in the file (.BMP/.JPG) specified in <FileName> in the rectangle specified by <Left>, <Top>, <Right>, <Bottom> using the format codes

contained in <Flags>. Scaling factors can be specified in <ScaleX>, <ScaleY>.

Valid format code are:

BMR.FIT.TO.RECT

Stretch (or shrink) bitmap to fit rectangle.

Cannot be used with any other codes

or

BMR.CENTER.HZ.RECT
Center the bitmap horizontally in rectangle

BMR.CENTER.VT.RECT
Center the bitmap vertically in rectangle

BMR.SCALE

Multiply dimensions by scaling factors below

When scaling, values contained in <ScaleX> and <ScaleY> are

converted to floating point, divided by 100, and then multiplied

by their respective axis to providing scaling by as little as 1 percent.

Scaling example:

To double only the horizontal size of a bitmap:

<ScaleX> = 200
! * 2

<ScaleY> = 100
! * 1

To halve a bitmap

<ScaleX> = 50

! * .5

<ScaleY> = 50

! * .5

To convert bitmap pixels to .01 inch:

<ScaleX> = 1440
! * 14.40 (TWIPS/inch)

<ScaleY> = 1440
! * 14.40 (TWIPS/inch)

SetOrientation & GetPageInfo

(SetOrientation = <Mode>)

Sets the paper orientation contained in <Mode>.

Valid values for <Mode> are:

DMORIENT.PORTRAIT

Vertical paper alignment

DMORIENT.LANDSCAPE

Horizontal paper alignment

(GetPageInfo = <ItemCode>)

Returns the information specified in <ItemCode>

Valid <PtrItem> Values:

PTR.PAGEINFO.PRINTABLESIZE
Dimensions of printable area (Width, Height)

PTR.PAGEINFO.PHYSICALSIZE

Physical page size (Width, Height)

PTR.PAGEINFO.PHYSICALOFFSET
Offset to start of printable area (Left, Top)

PTR.PAGEINFO.LOGPIXELS

Number of pixels per inch (Width, Height)

The return value for this function is obtained by requesting the result of the previous

operation with (GetFuncResult) and then performing an input of the 4 byte return value

(see GetFuncResult).

The paired values are returned in <LoResult> and <HiResult> respectively.

GetFuncResult

(GetFuncResult)

Requests the 32 bit (4 byte) result of the last printer function. This function must

Be followed immediately by an INPUT statement to receive the value into the

MTB program.

Example:

! Variables for GetFuncResult

Length 2 & Local Word$

! Temporary 2 byte word holder

Length 4 & Local Result$

! 4 byte string result

Length 5.0 & Local LoResult, HiResult

! Lower/upper 16 bit value

Length 10.0 & Local BigResult

! 32 bit value

! Variables for GetPageSize

Length 5.0 & Local PageWidth, PageHeight

! Printable page size

! Program segment

.

.

Gosub GetPageSize

! Define printer page size

.

.

GetPageSize:

 Print (LUN) (GetPageInfo = PTR.PAGEINFO.PRINTABLESIZE)

 Gosub GetFuncResult

! Get low and high 16 bit results

 PageWidth = LoResult

! Store resulting page width

 PageHeight = HiResult

! Store resulting page height

Return

GetFuncResult:

 Print (LUN) (GetFuncResult)

! Request result

 Input (LUN) Result$

! Input result

 Word$
= SUB(Result$,2,1)+ Result$

! Get and reverse 1st 2 bytes

 LoResult
= HEXDEC(Word$)

! Convert to MTB numeric

 Word$
= SUB(Result$,4,1)+SUB(Result$,3,1)
! Get and reverse 2nd 2 bytes

 HiResult
= HEXDEC(Word$)

! Convert to MTB numeric

 BigResult
= HiResult*65536+LoResult

! Combined 32 bit numeric value

Return

